Directed evolution of homing endonuclease I-SceI with altered sequence specificity.
نویسندگان
چکیده
Homing endonucleases recognize specific long DNA sequences and catalyze double-stranded breaks that significantly stimulate homologous recombination, representing an attractive tool for genome targeting and editing. We previously described a two-plasmid selection system that couples enzymatic DNA cleavage with the survival of host cells, and enables directed evolution of homing endonucleases with altered cleavage sequence specificity. Using this selection system, we successfully evolved mutant I-SceI homing endonucleases with greatly increased cleavage activity towards a new target DNA sequence that differs from the wild-type cleavage sequence by 4 bp. The most highly evolved mutant showed a survival rate approximately 100-fold higher than that of wild-type I-SceI enzyme. The degree of selectivity displayed by a mutant isolated from one round of saturation mutagenesis for the new target sequence is comparable to that of wild-type I-SceI for the natural sequence. These results highlight the ability and efficiency of our selection system for engineering homing endonucleases with novel DNA cleavage specificities. The mutant identified from this study can potentially be used in vivo for targeting the new cleavage sequence within genomic DNA.
منابع مشابه
Directed evolution and substrate specificity profile of homing endonuclease I-SceI.
The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cl...
متن کاملA highly sensitive selection method for directed evolution of homing endonucleases
Homing endonucleases are enzymes that catalyze DNA sequence specific double-strand breaks and can significantly stimulate homologous recombination at these breaks. These enzymes have great potential for applications such as gene correction in gene therapy or gene alteration in systems biology and metabolic engineering. However, homing endonucleases have a limited natural repertoire of target se...
متن کاملCreating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells
To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA seque...
متن کاملHigh resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-SceI.
The homing endonuclease PI-SceI from Saccharo myces cerevisiae consists of two domains. The protein splicing domain I catalyzes the excision of the mature endonuclease (intein) from a precursor protein and the religation of the flanking amino acid sequences (exteins) to a functional protein. Furthermore, domain I is involved in binding and recognition of the specific DNA substrate. Domain II of...
متن کاملEvolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2009